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Abstract. This is a collection of some random notes on topics
related to classical mechanics that I prepared for classes of the
same title.
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CHAPTER 1

Introduction

Mechanical problems are described using different mathematical
formalisms: notably, Newton’s equations, Lagrangian mechanics, Hamil-
tonian mechanics.

1.1. Newton’s equations

This is the most basic but also most general way of describing a
mechanical problem. The underlying mathematical formalism is just
the theory of ODEs. The experimental fact that initial position and
velocity are enough to determine the motion is encoded in the usage
of second-order ODEs. Newton’s equations are used in a variety of
mechanical problems as they allow for all kinds of forces including,
e.g., friction. On the other hand, they lack in general methods for
finding and describing solutions.

1.2. Lagrangian mechanics

Based on variational calculus, Lagrangian mechanics is available
only for certain mechanical problems, which however includes all fun-
damental problems. Lagrangian mechanics makes the change of coor-
dinates and the study of constrained systems routine. Via Noether’s
theorem it connects configuration space symmetries to conservation
laws. The Lagrangian formalism is also at the basis of Feynman’s ap-
proach to quantum mechanics via path integrals.

1.3. Hamiltonian mechanics

It is the most flexible way of studying mechanical systems as one
has symplectomorphisms at one’s disposal. Noether’s theorem becomes
easier and at the same time more powerful. The possibility of looking
for coordinates in which the system gets easier is of tremendous im-
portance in the applications. The Hamiltonian formalism is also at the
basis of the operator approach to quantum mechanics. With respect
to Lagrangian mechanics, Hamiltonian mechanics has the drawback
of not being directly available for systems in which the Lagrangian is
degenerate.
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6 1. INTRODUCTION

1.4. Field theory

The higher dimensional generalization of mechanics is called field
theory and is based on PDEs. The unknown functions are now defined
on a domain in Rn (or on an n-dimensional manifold). Lagrangian
and Hamiltonian methods are available. The Hamiltonian formalism
has one further drawback in that it makes an explicit choice of the
time direction. As a consequence, fundamental field theories, where
special relativity is also taken into account, are usually described in
the Lagrangian formalism. Theories with degenerate Lagrangian (e.g.
electrodymanics) are also quite common, so the Legendre transform is
not directly available.



CHAPTER 2

Symplectic Integrators

The Hamiltonian flow preserves the symplectic structure; an ap-
proximation, such as for numerical integration, in general does not,
which can be expected to miss some important features of the system
under study. In this note, we briefly recall how to improve the Euler
method in such a way that the symplectic structure is preserved.

2.1. The Euler method

Let X be a vector field on an open subset O of Rn and φX,t its flow
(at time t). Recall that φX,t(x0), x0 ∈ U , is by definition the evaluation
at time t of the unique solution to the Cauchy problem{

ẋ(t) = X(x),

x(0) = x0.
(2.1)

The time t must belong to the maximal interval of definition of the
solution, which in turn in general depends on x0. By uniqueness we
have the fundamental property

φX,t ◦ φX,s = φX,t+s,

for t, s and t + s in the maximal interval. This implies that, for t in
the maximal interval and any integer N , we have

φX,t = φX, t
N
◦ · · · ◦ φX, t

N︸ ︷︷ ︸
N times

.

The Euler method consists in approximating φX,τ , τ = t
N

, by a trun-
cation of its Taylor expansion in τ . Let us work it out up to O(τ 2). A
path x(t) may be expanded around t = 0 as

x(τ) = x(0) + τ ẋ(0) +O(τ 2).

If it is the solution to (2.1), we then have

x(τ) = x0 + τX(x0) +O(τ 2).

This yields

φX,τ (x0) = x0 + τX(x0) +O(τ 2). (2.2)

7



8 2. SYMPLECTIC INTEGRATORS

The Euler method, at this order, consists in replacing φX,τ by its trun-
cation

φ̃X,τ (x0) := x0 + τX(x0),

getting the approximate solution

φEuler
X,t := φ̃X, t

N
◦ · · · ◦ φ̃X, t

N︸ ︷︷ ︸
N times

.

2.2. Hamiltonian systems

Let H be a Hamiltonian function (on W×Rd with W an open subset
of Rd) and XH its Hamiltonian vector field. We want to compute its
flow φXH ,t. (To match the notation with that of other chapters, we
set n = 2d and O = W × Rd.) The problem is that in general the

truncation φ̃XH ,
t
N

does not preserve the symplectic form, nor does so

the ensuing Euler approximation φEuler
XH ,t

.
The idea of a symplectic integrator, in this context, consists in

choosing a different approximation of φXH ,τ that is equal to φ̃XH ,τ up
to O(τ 2) but preserves the symplectic form.

Suppose that H = H1+H2 (we will see below that this is interesting
for practical purposes if we can compute the Hamiltonian flows of H1

and H2 exactly). We then have XH = XH1 +XH2 . By (2.2) we have

φXH1
,τ (x0) = x0 + τXH1(x0) +O(τ 2),

φXH2
,τ (x0) = x0 + τXH2(x0) +O(τ 2).

This implies

(φXH1
,τ ◦ φXH2

,τ )(x0) = x0 + τ(XH1(x0) +XH2(x0)) +O(τ 2)

= x0 + τXH(x0) +O(τ 2),

so

φXH ,τ = φXH1
,τ ◦ φXH2

,τ +O(τ 2).

The idea is now to replace φXH ,τ by

φ̂XH ,τ := φXH1
,τ ◦ φXH2

,τ (2.3)

getting the approximate solution

φSI
XH ,t

:= φ̂XH ,
t
N
◦ · · · ◦ φ̂XH ,

t
N︸ ︷︷ ︸

N times

(2.4)

Notice that φXH1
,τ and φXH2

,τ preserve the symplectic structure and

hence so does φSI
XH ,t

.
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The method is applicable if we can compute φXH1
,τ and φXH2

,τ

exactly. The typical case is that of a Hamiltonian of the form H(q, p) =
T (p)+U(q). In this case, we set H1(q, p) = T (p) and H2(q, p) = U(q).1

To be even more specific (even though this is not needed), let us assume

that T (p) = ||p||2
2m

. Let us now compute the corresponding flows. In the
case of H1 we have to solve

q̇ =
p

m
,

ṗ = 0,

with initial conditions at t = 0 given by q0 and p0. This yields

q(τ) = q0 + τ
p0

m
, p(τ) = p0.

Hence

φXH1
,τ (q0, p0) =

(
q0 + τ

p0

m
, p0

)
.

In the case of H2 we have to solve

q̇ = 0,

ṗ = −∇U(q),

with the same initial conditions. This yields

q(τ) = q0, p(τ) = p0 − τ∇U(q0).

Therefore,
φXH2

,τ (q0, p0) = (q0, p0 − τ∇U(q0)) .

We finally have by (2.3) that

φ̂XH ,τ (q0, p0) =

(
q0 + τ

p0 − τ∇U(q0)

m
, p0 − τ∇U(q0)

)
(2.5)

Notice that this agrees up to O(τ 2) with the first-order Taylor approx-
imation

φ̃XH ,τ (q0, p0) =
(
q0 + τ

p0

m
, p0 − τ∇U(q0)

)
but is different from the second-order Taylor approximation of φXH ,τ

(which in general does not preserve the symplectic structure).
If we had chosen instead H1(q, p) = U(q) and H2(q, p) = T (p) =

||p||2
2m

, we would have got

φ̂XH ,τ (q0, p0) =
(
q0 + τ

p0

m
, p0 − τ∇U

(
q0 + τ

p0

m
, p0

))
,

1Observe that the Hamiltonian H2 is not hyperregular as a function of p, so
it certainly does not arise as the Legendre transform of a Lagrangian. This shows
one more reason why the Hamiltonian formalism is often preferable.
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which yields a different approximation that also preserves the symplec-
tic structure.



CHAPTER 3

The Noether Theorem

A symmetry is an invertible transformation that preserves some
properties. In geometry, e.g., one considers transformations that pre-
serve “shape” (in Euclidean geometry this leads to translations, rota-
tions and reflections as symmetries). In mechanical systems, symme-
tries are transformations that preserve the equations of motions. One
also considers stricter symmetries that preserve more, e.g., the action
functional.

Symmetry transformations often arise as flows of vector fields. The
latter are then called infinitesimal symmetries. A fundamental result in
mechanics is Noether’s theorem which relates infinitesimal symmetries
to constants of motion.

3.1. Symmetries in Lagrangian mechanics

Let JL be the action functional associated to a Lagrangian function
on U × Rd × I:

JL[x] =

∫ b

a

L(x(t), ẋ(t), t) dt,

where x is a path [a, b] → U , [a, b] ⊂ I. A symmetry, in a strict sense,
is a diffeomorphism φ of U such that

JL[φ ◦ x] = JL[x] (3.1)

for each path x on U . Notice that in particular a symmetry maps
extremal paths (with end points xa, xb) to extremal paths (with end
points φ(xa), φ(xb)).

A vector field X on U is called an infinitesimal symmetry if its flow
φs is a symmetry for all s (where it is defined). We then have

0 =
∂

∂s

∣∣∣
s=0

JL[φs ◦ x] =
δJL
δx

[x,X],

where we regard the path t 7→ X(x(t)) as a variation. Recall the general
formula

δJL
δx

[x, δx] = ELL[x, δx] +

(
d∑
i=1

∂L

∂vi
δxi

)∣∣∣b
a
,

11



12 3. THE NOETHER THEOREM

with

ELL[x, δx] =

∫ b

a

d∑
i=1

(
∂L

∂qi
(x(t), ẋ(t), t)− d

dt

∂L

∂vi
(x(t), ẋ(t), t)

)
δxi(t) dt.

If X is an infinitesimal symmetry and x is an extremal path (i.e., it
satisfies the Euler–Lagrange equations), then we get

0 =

(
d∑
i=1

∂L

∂vi
X i

)∣∣∣b
a
.

This shows that the quantity in brackets is the same at the initial time a
and at the final time b. Since the choice of the end times was irrelevant
for the derivation, this shows that the quantity in brackets does not
change and is therefore a constant of motion.1 We can summarize this
as follows:

Definition 3.1. The Noether 1-form associated to the Lagrangian
L is the 1-form αL on U × Rd × I defined by

αL :=
d∑
i=1

∂L

∂vi
(q, v, t) dqi.

Theorem 3.2 (Noether’s Theorem). If X is an infinitesimal sym-
metry of JL, then

IX := ιXαL

is a constant of motion.

3.1.1. Symmetries and the Lagrangian function. A symme-
try of JL may actually be recognized directly on L. Recall that we
defined the tangent lift φ̌ of φ by

φ̌ : U × Rd × [a, b] → U × Rd × [a, b]
(q, v, t) 7→ (φ(q), dφ(q)v, t)

Lemma 3.3. A diffeomorphism φ of U is a symmetry of JL, as
expressed by equation (3.1), if and only if L ◦ φ̌ = L.

Proof. Recall that we observed that for any map φ we have JL[φ◦
x] = JL◦φ̌[x]. This immediately shows that φ is a symmetry if L◦φ̌ = L.

On the other hand, assume that φ is a symmetry. Then, by the
above observation, we have that JL◦φ̌[x] = JL[x] for every path x. If

we define L̃ := L ◦ φ̌−L, we then have JL̃[x] = 0 for every path x. We

1Recall that a function f on U × Rd × I is a called a constant of motion
(a.k.a. conserved quantity or first integral) if f(x(t), ẋ(t), t) is constant in t for
every solution x of the Euler–Lagrange equations.
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want to show that L̃ vanishes identically. Assume on the contrary that

there is a point (q, v, τ) in U × Rd × I such that L̃(q, v, τ) 6= 0. Then
consider the path x(t) = q+ (t− τ)v on the interval [τ, τ + ε]. We then
have

JL̃[x] =

∫ τ+ε

τ

L̃(q + (t− τ)v, v, t) dt = L̃(q, v, τ)ε+O(ε2).

By choosing ε appropriately, we then see that JL̃[x] cannot vanish for
all paths, and this is a contradiction. �

We now want to move on to infinitesimal symmetries. First we need
the following

Lemma 3.4. Let X be a vector field on U and φs its flow. Then the
tangent lift φ̌s is the flow of the vector field X̌ on U ×Rd × I given by

X̌(q, v, t) =
d∑
i=1

X i(q)
∂

∂qi
+

d∑
i,j=1

∂X i

∂qj
(q) vj

∂

∂vi
,

called the tangent lift of X.

Notice that the tangent lift of X defined above does not depend
on t and does not have a component in the t direction, so it can be
regarded (and this is usually done) as a vector field on U × Rd.

Proof. From φs+s′ = φs◦φs′ and φ0 = id, we get, by the definition
of the tangent lift, that φ̌s+s′ = φs ◦ φs′ and φ̌0 = id. Therefore, φ̌s is
also a flow. To compute the corresponding vector field, we just have
to derive φ̌s with respect to s at s = 0, and this gives the explicit
expression for X̌ in the lemma. �

We now have the

Corollary 3.5. A vector field X is an infinitesimal symmetry of
JL if and only if

X̌(L) = 0

3.1.2. Examples.

Example 3.6. Suppose that the system is invariant under transla-
tions in the ithe direction, i.e., X i = ∂

∂qi
is an infinitesimal symmetry.

This implies that the ith component of the generalized momentum,

pi =
∂L

∂vi
= ιXiαL,

is a constant of motion. Since X̌ i = ∂
∂qi

, we see that this occurs if and

only if ∂L
∂qi

= 0.
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Example 3.7. Suppose that d = 3 and the system is invariant
under rotations around the ith axis. In this case, the infinitesimal
symmetry is given by the vector field X i(q) =

∑3
j,k=1 εijk q

j ∂
∂qk

. The

corresponding constant of motion is

J i = ιXiαL =
3∑

j,k=1

εijk q
j ∂L

∂vk

which is called the (generalized) angular momentum. If we denote
∂L
∂vk

by pk, we then have J i = (q × p)i. One can easily compute

X̌ =
∑3

j,k=1 εijk q
j ∂
∂qk

+
∑3

j,k=1 εijk v
j ∂
∂vk

. This describes an infinitesi-

mal rotation acting simultaneously on the q-space and on the v-space.
A Lagrangian L of the form L(q,v, t) = T (v) − U(q) is then invari-
ant if both functions T and U are invariant under rotations (around
the ith axis). If T and U are invariant under the whole group SO(3),
then all components of the vector J = q × p are conserved. Finally,
if T (v) = 1

2
m||v||2, we then have J = q × mv which is the usual

expression for the angular momentum.

3.1.3. Generalized symmetries. Condition (3.1) is a bit too
strong since it involves the action functional also away from extremal
paths. One way to weaken it, in such a way that a symmetry still pre-
serves the Euler–Lagrange equations, is to assume that the restriction
of

JL,φ[x] := JL[φ ◦ x]− JL[x]

on each path space P [a,b]
xa,xb := {x : [a, b] → U : x(a) = xa, x(b) = xb} is

constant. This can also be characterized as in the following

Lemma 3.8. Assume that the restriction of JL,φ on each P [a,b]
xa,xb is

constant. Then there is a function F on U such that

JL,φ[x] = F (xb)− F (xa)

for each x ∈ P [a,b]
xa,xb for each a, b, xa, xb.

Remark 3.9. Notice that the function F is defined up to an addi-
tive constant on each connected component of U .

Proof. Let us first consider the case when U is connected. Fix a
point y in U . Then JL,φ will take the same value on all paths in P [a,b]

y,xb .
We then define F (xb) as such value.

Next we want to show that F (y) = 0. For xb = y, we also have
the constant path x(t) = y ∀t ∈ [a, b] at our disposal. This can be
considered for arbitrary a and b. Since JL,φ is defined as an integral,
its value vanishes if b tends to a. So F (y) = 0.
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Consider now a path x in P [a,b]
xa,y with the property that all its deriva-

tives at t = a vanish. Next define x ∈ P [a,b]
y,xa by x(t) = x(a + b − t).

Finally, define x̃ ∈ P [a,b]
y,y by

x̃(t) =

{
x(2t− a) if t∈

[
a, a+b

2

]
x(2t− b) if t ∈

[
a+b

2
, b
]

Notice that the vanishing condition on the derivatives of x at its initial
point makes this path smooth. We have JL,φ[x̃] = F (y) = 0. On
the other hand, since JL,φ is defined as an integral, we have JL,φ[x̃] =
JL,φ[x] + JL,φ[x]. Therefore, JL,φ[x] = −JL,φ[x] = −F (xa), since x ∈
P [a,b]
y,xa . By the constancy of JL,φ, we conclude that JL,φ[x] = −F (xa) for

every x ∈ P [a,b]
xa,y

Finally, consider a path x in P [a,b]
xa,xb that passes through y at some

time τ ∈ (a, b). Denote by x̃ the restriction of this path to the interval
[a, τ ] and by x̄ its restriction to [τ, b]. Since JL,φ is defined as an integral,

we have JL,φ[x] = JL,φ[x̃] + JL,φ[x̄]. Since x̄ ∈ P [τ,b]
y,xb , we know that

JL,φ[x̄] = F (xb) and, since x̃ ∈ P [a,τ ]
xa,y , we know that JL,φ[x̃] = −F (xa).

We conclude that JL,φ[x] = F (xb)− F (xa).
If U is not connected, we just apply the above procedure to each

connected component. �

We then define a generalized symmetry as a pair (φ, F ), where φ is
a diffeomorphism of U and F is a function on U , such that

JL[φ ◦ x] = JL[x] + F (xb)− F (xa)

for each x ∈ P [a,b]
xa,xb for each a, b, xa, xb. Notice that we can write

F (xb)− F (xa) =

∫ b

a

d

dt
F (x(t)) dt =

∫ b

a

d∑
i=1

ẋi(t)
∂F

∂qi
(x(t)) dt.

If we define F̃ (q, v) :=
∑d

i=1 v
i ∂F
∂qi

(q), then, by repeating the arguments

in the proof of Lemma 3.3, we conclude that (φ, F ) is a generalized
symmetry if and only if

L ◦ φ̌ = L+ F̃ . (3.2)

The infinitesimal version of a generalized symmetry is a vector field
X such that its flow φs together with a family Fs of functions is a
generalized symmetry for all s (where it is defined):

JL[φs ◦ x] = JL[x] + Fs(xb)− Fs(xa) (3.3)
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for all s. Define f = ∂Fs

∂s
|s=0. We then say that the pair (X, f) defines

a generalized infinitesimal symmetry. By differentiating equations (3.2)
and (3.3) with respect to s at s = 0 we get the following

Proposition 3.10. The pair (X, f) defines a generalized infinites-
imal symmetry of JL if and only if

X̌(L) = f̃

with f̃(q, v) :=
∑d

i=1 v
i ∂f
∂qi

(q). In this case

IX := ιXαL − f
is a constant of motion.

Remark 3.11. The even more general case when the restriction

of JL,φ on each P [a,b]
xa,xb is only locally constant2 on each path space

P [a,b]
xa,xb := {x : [a, b] → U : x(a) = xa, x(b) = xb} can be treated with

a bit more of work. We enunciate the results for completeness. A
diffeomorphism φ of U has this property if and only there is a closed
1-form Θ =

∑d
i=1 Θi dqi such that

JL[φ ◦ x] = JL[x] +

∫
x

Θ,

and this occurs if and only if L◦φ̌ = L+Θ̃ with Θ̃(q, v) =
∑d

i=1 v
i Θi(q).

A vector field X defines the infinitesimal version of this if and only if

there is a closed 1-form θ =
∑d

i=1 θi dq
i such that X̌(L) = θ̃ with

θ̃(q, v) =
∑d

i=1 v
i θi(q). This does not lead to a conservation law if θ is

not exact, but only to the statement that the closed 1-form ιXαL − θ
integrates to zero along every orbit. Notice that if the closed form θ is
exact, θ = df , then we are in the case described above, and we have
indeed a constant of motion as in Proposition 3.10. By Poincaré Lemma
we know that this necessarily happens if U is star shaped. Otherwise,
we may always restrict our attention to a star-shaped neighborhood
V ⊂ U of the initial conditions. As long as the orbit lies in V , we have
a constant of motion. We may also take a later point of this orbit as a
new initial condition and choose a new star-shaped neighborhood. In
general, we may patch the whole orbit by star-shaped neighborhoods
Vi, and in each of them we have a constant of motion. In each Vi we
have indeed a function fi such that θ|Vi = dfi and a constant of motion
IX,i := ιXαL− fi defined on Vi. Notice however that, if Vi and Vj have

2This means that each such restriction does not change under continuous de-
formations of the path. On the other hand, if the path space is not connected, the
restriction may take a different value on different connected components.
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a nonempty intersection, the restriction of fi and fj to this intersection
will not be equal in general but will differ by a constant. Therefore, in
this setting, a constant of motion exists, but only locally, and it may be
considered globally only up to locally defined constants. In particular,
it is not a globally defined function.

Remark 3.12. Notice that we have a linear map

T : Ω1(U) → C∞(U × Rd)∑d
i=1 θi(q) dqi 7→

∑d
i=1 v

i θi(q).

The function θ̃ used in the previous remark is then Tθ. The function

f̃ used above is Tdf . Notice that

Tφ∗θ = φ̌∗Tθ

for every smooth map φ : U → V and for every θ ∈ Ω1(V ). More
asbtracly, we may write

Tφ∗ = φ̌∗T (3.4)

as an equality of linear maps Ω1(V )→ Ω1(U).

3.1.3.1. Equivalent Lagrangians. Let L be a Lagrangian on U ×
Rd×I, U open in Rd, and let G be a function on U . Define

L̃ = L+ TdG

(i.e., L̃(q, v, t) = L(q, v, t) +
∑d

i=1 v
i ∂G
∂qi

). We then have JL̃[x] = JL[x] +

G(xb) − G(xa) for all x ∈ P [a,b]
xa,xb . This implies that L and L̃ have the

same extremal paths and are therefore equivalent from the point of
view of Euler–Lagrange equations. The Noether 1-forms are related by

αL̃ = αL + dG.

Also notice that, if (φ, F ) is a generalized symmetry for L, then by

(3.4) we get that (φ, F +φ∗G) is a generalized symmetry for L̃. Hence,
if (X, f) is a generalized infinitesimal symmetry for L, we see that

(X, f +X(G)) is a generalized infinitesimal symmetry for L̃. We then
have that ιXαL̃ − f − X(G) = ιXαL − f , so the constant of motion
corresponding to the generalized symmetry (X, f) of L is equal to the
constant of motion corresponding to the generalized symmetry (X, f +

X(G)) of L̃.
Notice that a strict infinitesimal symmetry X of L is only a gen-

eralized one if one uses the equivalent Lagrangian L̃ and X(G) 6= 0.
Therefore, the notion of strict symmetry really depends on the choice
of Lagrangian. Since one cannot be sure to have chosen the “right”
Lagrangian (and there might be no Lagrangian that is “right” for all
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symmetries in case there are more at hand), the correct framework to
use is that of generalized symmetries.

Also observe that, if f can be written as −X(G) for some func-
tion G, then we may transform the generalized infinitesimal symmetry
(X, f) of L into an infinitesimal symmetry, in the strict sense, of the

equivalent Lagrangian L̃. Notice however that, even if this may be pos-
sible, different infinitesimal symmetries may require different equivalent
Lagrangians to be made strict.

3.1.3.2. Example: constant magnetic field. Consider a charged par-
ticle moving in a constant magnetic field of magnitude B 6= 0. The
system is clearly invariant under translations in every direction. On
the other hand, the Lagrangian depends on a vector potential gener-
ating this field, and this cannot be translation invariant, otherwise it
would produce the zero magnetic field. This provides an example of
generalized symmetry.

Suppose for definiteness that B points in x3-direction and the par-
ticle has mass m and charge e. Newton’s equation then read (setting
the speed of light c to 1)

mẍ1 = eBẋ2,

mẍ2 = −eBẋ1,

mẍ3 = 0,

and they are clearly invariant under translations x(t) 7→ x(t) + a,
where a is an arbitrary vector, since they only depend on the first and
second time derivatives of x. On the other hand, the Lagrangian of
the system is

L(x,v) =
1

2
m||v||2 + ev ·A(x).

Notice that A cannot be translation invariant (i.e., constant) since
B = ∇×A 6= 0. For example we may choose A1 = −Bx2, A2 = A3 = 0
getting

L(x,v) =
1

2
m||v||2 − eB v1x2.

We then have

αL =
3∑
i=1

mvidqi − eB x2dx1.

Notice that this Lagrangian is invariant under translations in the x1

and in the x3 direction. So we have the integrals of motion

P1 := ι ∂
∂x1
αL = mv1 − eB x2,

P3 := ι ∂
∂x3
αL = mv3.
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Under a translation in the x2 direction we have, on the other hand,

∂̌

∂x2
L =

∂

∂x2
L = −eB v1 = f̃

with f(x) = −eB x1. We then get the integral of motion

P2 := ι ∂
∂x2
αL − f = mv2 + eB x1.

Exercise 3.13. Show that rotations around the x3 axis are also
generalized symmetries and compute the corresponding integral of mo-
tion.

Exercise 3.14. Show that the integrals of motions computed above
do not change if the vector potential A is changed to A +∇λ.

Exercise 3.15. Show that one can choose A such that v · A is
invariant under rotations around the x3 axis, so that rotations around
the x3 axis become symmetries in the strict sense.

Exercise 3.16. Show that changing the vector potential A to Ã =
A +∇λ produces an equivalent Lagrangian.

3.2. From the Lagrangian to the Hamiltonian formalism

Suppose L is a hyperregular Lagrangian on U×Rd×I. Denote by ψL
its associated Legendre mapping and by H its Legendre transform. The
first observation is that the factors ∂L

∂vi
appearing in the Definition 3.1

of the Noether 1-form are just the generalized momenta pi, so we have

αL = ψ∗Lα,

where

α :=
d∑
i=1

pidq
i

is the Liouville 1-form (a.k.a. the Poincaré 1-form or the tautological
1-form). Notice that the dependency on the Lagrangian of the Noether
1-form comes only through the Legendre mapping: the Liouville 1-form
is independent of L. Also notice that the canonical symplectic form
ω is actually dα. Now suppose that X is an infinitesimal symmetry.
Then IX = ιXαL is a constant of motion. We clearly have IX = ψ∗LFX
with

FX = ιXα =
d∑
i=1

X i(q) pi.
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Since this is a constant of motion, we then have XH(FX) = 0. But this
is equivalent to

X̃(H) = 0, (3.5)

where X̃ is the Hamiltonian vector field of FX :

ιX̃ω = −dFX . (3.6)

This is a consequence of the following basic

Lemma 3.17. Let f and g be functions, and let Xf and Xg be their
Hamiltonian vector fields. Then

Xf (g) = −Xg(f) = ιXgιXf
ω

We will se that equations (3.5) and (3.6) characterize symmetries
in the Hamiltonian formalism. The present case has however two pe-
culiarities. The first is that FX is linear in the p variables. The second
is that we have FX = ιX̃α, which in turn implies LX̃ α = 0.

A simple computation shows that

X̃ = X −
d∑

i,j=1

∂X i

∂qj
(q) pi

∂

∂pj
,

which is called the cotangent lift of X.
If (X, f) is a generalized inifnitesimal symmetry, then we have IX =

ιXαL − f = ψ∗LFX,f with FX,f =
∑d

i=1 X
i(q) pi − f(q). If we denote

by X̃f = X̃ − Xf the Hamiltonian vector field of FX,f , we then get

X̃f (H) = 0 and ιX̃f
ω = −dFX,f , which have the same form as (3.5)

and (3.6). Notice that in this case FX,f is at most linear in the p
variables and that LX̃f

α = df .

3.3. Symmetries in Hamiltonian mechanics

Let H ∈ C∞(V ) be a time-independent Hamiltonian on an open
subset V of Rd × Rd. Notice that we can assume H to be time inde-
pendent without loss of generality.3

3If H(q, p, t) were time dependent, we could replace it by the time-independent

Hamiltonian H̃(q, τ, p, pτ ) = H(q, p, τ) + pτ on extended phase space.
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Recall that Hamilton’s equation for H can be obtained as Euler–
Lagrangian equations for the Lagrangian4

L̃H(q, p, vq, vp) =
d∑
i=1

piv
i
q −H(q, p) = Tα−H,

where we have used the notations of Remark 3.12 with α =
∑d

i=1 pi dq
i

the Liouville 1-form. Notice that we also have αL̃H
= α.

A symmetry is then a diffeomorphism φ of the phase space V such

that φ̌∗L̃H = L̃H . By Remark 3.12, we have φ̌∗L̃H = Tφ∗α − φ∗H.
Since H does not depend on the velocities, we then have that φ is a
symmetry if and only if

φ∗H = H and φ∗α = α.

Notice that the second equation also implies φ∗ω = ω. A vector field
Y on V is then an infinitesimal symmetry if and only if

Y (H) = 0 and LY α = 0,

whereas the corresponding constant of motion is ιY α.
This occurs, e.g., if H is the Legendre transform of L and Y is the

cotangent lift of an infinitesimal symmetry of L.
Similarly, we see that (φ, F ) is a generalized symmetry if and only

if

φ∗H = H and φ∗α = α + dF.

A pair (Y, g) of a vector field and a function on V is then a generalized
infinitesimal symmetry if and only if

Y (H) = 0 and LY α = dg.

In this case, the constant of motion is F = ιY α− g. This implies

ιY ω = −dF.

Notice that now F can be an arbitrary function on V . We have thus
arrived at the

Theorem 3.18. A (possibly generalized) infinitesimal symmetry of
a Hamiltonian system on V with Hamiltonian function H is a Hamil-
tonian vector field XF , ιXF

ω = −dF , such that XF (H) = 0.

4Notice that fixing both positions and momenta at endpoints in general yields
no solutions. On the other hand, the boundary term in computing the functional
derivative of this Lagrangian does not involve the variation of the momenta. One
then considers extremal paths with fixed qs at the endpoints, leaving the ps free.
The corresponding Euler–Lagrange equations for these extremal paths are then the
Hamilton equations.
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Remark 3.19. Notice that by Lemma 3.17 this immediately implies
XH(F ) = 0, so F is the corresponding constant of motion.

Remark 3.20. Lemma 3.17 can also be read the other way around.
Namely, suppose that F is a constant of motion for a Hamiltonian sys-
tem with Hamiltonian H (i.e., XH(F ) = 0). Then XF is a symmetry
(i.e., XF (H) = 0). In this way, we have a one-to-one correspon-
dence between symmetries and constants of motion up to an
additive constant.

Remark 3.21. Suppose that H is the Legendre transform of a
Lagrangian L defined on U × Rd =: V . In the Lagrangian formalism,
infinitesimal symmetries are vector fields on U that preserve L (possibly
up to a term Tdf , with f a function on U). These correspond to
infinitesimal symmetries in the Hamiltonian formalism whose constants
of motions are at most linear in the p variables. These are just very
particular examples of symmetries.

Remark 3.22. The general case discussed in Remark 3.11 corre-
sponds, in its infinitesimal form, to having a vector field Y and a closed
1-from θ such that Y (H) = 0 and LY α = θ. Notice that the second
equation is equivalent to LY ω = 0. Again this does not produce a
constant of motion in general. However, locally we may have θ exact
and proceed as above.

3.3.1. Symplectic geometry. The above results have a nice, gen-
eral form in symplectic geometry. There one just assumes to have a
closed 2-form ω with the property that for each function f there is a
unique vector field Xf , called the Hamiltonian vector field of f , such
that ιXf

ω = −df . The latter property may be checked by comput-
ing the matrix representing ω at each point in local coordinates and
verifying that it is nondegenerate.

A function f satisfying ιXω = −df is called a Hamiltonian function
for X and is not uniquely defined (it is defined up to a constant on each
connected component). A vector field that is the Hamiltonian vector
field for some function is called a Hamiltonian vector field. Not every
vector field is Hamiltonian. Notice that a Hamiltonian vector field X
automatically satisfies LXω = 0. A vector satisfying this property is
called a symplectic vector field. In general not every symplectic vector
field is Hamiltonian.

Notice that Lemma 3.17 holds in this general setting. Hence, if
we are given a Hamiltonian function H, which defines the dynamic of
the system, we define a symmetry to be a Hamiltonian vector field X
such that X(H) = 0. If f is a Hamiltonian function for X, then the
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lemma implies that XH(f) = 0, so f is a constant of motion. This
is the general, simple and beautiful version of Noether’s theorem in
symplectic geometry.

3.3.2. The Kepler problem. Consider the Hamiltonian

H(q,p) =
||p||2

2m
− K

||q||
for a body in a gravitational field, where K is a positive constant.
Notice that H is a smooth function on U × R3 with U = R3 \ 0.
Rotation invariance, in the Lagrangian version, yields conservation of
the angular momentum5

J = q × p,

see Example 3.7. Notice that the components of J are linear in p
as they come from symmetries in the Lagrangian formalism. Another
constant of motion is the Laplace–Runge–Lenz vector (shortly, the Lenz
vector)

A = p× J −mK q

||q||
.

The simplest way to prove that A is conserved is by taking its time
derivative along a solution to Hamilton’s equations

q̇ =
p

m
,

ṗ = −K q

||q||3

Using J̇ = 0 along a solution, we then get

Ȧ = −K q

||q||3
× J −K

(
q

||q||
− p · q
||q||3

)
= 0.

From XH(A) = 0 we then get XAi(H) = 0 for all i.
Notice that A has a quadratic term in the p variables, so it does

not come from a symmetry in the Lagrangian setting (nor is XAi a
cotangent lift). On the other hand, the vector fieldsXAi are symmetries
in the Hamiltonian formalism.

The conservation of the Lenz vector can be used to derive the Kepler
orbits directly (without having to solve the differential equations). First
observe that, by the cyclic property of the triple product, we have

A · q = ||J ||2 −mK||q||.
Recall that adapting the coordinates to the initial conditions we may
assume that the motion occurs in the xy plane. Then J points in the

5By this we mean that each component of the vector J is a constant of motion.
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z direction. So A is also in the xy plane. If we denote by θ the angle
between A and q, we may then rewrite the above equation as

Ar cos θ = J2 −mKr,
where we have set r := ||q||, J := ||J || and A := ||A||. Notice that J
and A are obviously also constants of motion. We then get

r =
J2

mK

1 + A
mK

cos θ
,

which shows that the orbits are conic sections with eccentricity e = A
mK

.

Remark 3.23. The Hamiltonian vector fields XJi generate infini-
tesimal rotations and correspond to the fact that the Hamiltonian is
rotation invariant (with rotations extended to phase space by the cotan-
gent lift; i.e, A ∈ SO(3) acts by (q,p) 7→ (Aq,Ap)). The vector fields
XAi

generate additional infinitesimal transformations. One can show
that the XJi ’s and the XAi

’s together generate a (nonlinear) action of
the group SO(4) on phase space.



CHAPTER 4

The Hamilton–Jacobi Equation

The Hamilton–Jacobi equation is a PDE associated to a Hamil-
tonian system with which it has a two-way link. On the one hand,
it is the PDE satisfied by the action functional evaluated on orbits
as a function of the endpoint variables; as such, solving the Hamilton
equation provides an effective method of solving the Cauchy problem
for the Hamilton–Jacobi equation (method of characteristics). On the
other hand, a solution depending on enough parameters (complete in-
tegral) provides a generating function for a canonical transformation
that trivializes the Hamiltonian, thus allowing one to solve the Hamil-
ton equations.

The method actually only works for very special systems (integrable
systems); however, perturbations of integrable systems are more ef-
fectively studied in the canonical variables in which the unperturbed
Hamiltonian is trivialized.

Finally, the Hamilton–Jacobi equation is related to the asymptotics
of the Schrödinger equation in the semiclassical limit.

4.1. The Hamilton–Jacobi equation

Throughout we will denote by U an open subset of Rd, by I an
interval and by H a Hamiltonian function on U×Rd×I, which we will
write as H(q, p, t).

The Hamilton–Jacobi equation for the unknown function S on an
open subset of of U × I is then

∂S

∂t
+H

(
q,
∂S

∂q
, t

)
= 0

where ∂S
∂q

is a shorthand notation for ∂S
∂q1
, . . . , ∂S

∂qd
.

If the Hamiltonian does not depend on the time variable t, we
simply write H(q, p). To it one associates the reduced Hamilton–Jacobi
equation in the unknown function S0 on an open subset of U :

H

(
q,
∂S0

∂q

)
= E

25
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where E is a parameter, called the energy. Notice that if S0 is a solution
of the reduced Hamilton–Jacobi equation at energy E, then S(q, t) =
S0(q)− Et is a solution of the Hamilton–Jacobi equation.

Finally, notice that S and S0 enter into the equations only through
their derivatives; so shifting them by constants yields new solutions.

Remark 4.1. The Hamilton–Jacobi equation is also related to the
asymptotics of the Schrödinger equation which appears in quantum

mechanics. For the Hamiltonian H(q, p) =
∑d

i=1
p2i
2m

+ V (q), this is the
PDE

i~
∂ψ

∂t
= −

d∑
i=1

~2

2m

∂2ψ

(∂qi)2
+ V (q)ψ,

where the unknown ψ is a time-dependent complex-valued function on
Uand ~ is a constant. If one writes

ψ(q, t) = A(q, t) e
i
~φ(q,t),

where A and φ are real valued, and assumes that for ~ small we have
A = A0 + O(~) and φ = φ0 + O(~), then φ0 solves the Hamilton–
Jacobi equation on W := {q ∈ U : A0(q, t) 6= 0 ∀t}. This gives an
indication that in the limit ~→ 0 quantum mechanics is approximated
by classical mechanics.

4.2. The action as a function of endpoints

Let L be a Lagrangian function on U ×Rd× I and denote by S its
corresponding action functional:

S[x] =

∫ tB

tA

L(x(t), ẋ(t), t) dt,

where x is a map [tA, tB] → U , with [tA, tB] ⊆ I. Let W be an open
subset of U × I ×U × I such that for each (qA, tA, qB, tB) ∈ W there is
a unique extremal path, denoted by q∗qA,tA,qB ,tB (or simply q∗). Define

S∗(qA, tA, qB, tB) := S[q∗qA,tA,qB ,tB ].

Example 4.2. Consider the free particle in one dimension; i.e.,
d = 1, U = R, L(q, v, t) = 1

2
mv2. The EL equation, mq̈ = 0, is easily

solved, and we have, with W = {(qA, tA, qB, tB) ∈ U × I ×U × I : tA 6=
tB},

q∗qA,tA,qB ,tB(t) =
(t− tA)qB + (tB − t)qA

tB − tA
.

Hence

q̇∗qA,tA,qB ,tB(t) =
qB − qA
tB − tA
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and

S∗(qA, tA, qB, tB) =

∫ tB

tA

1

2
m

(
qB − qA
tB − tA

)2

dt =
1

2
m

(qB − qA)2

tB − tA
.

We now want to study the dependency of S∗ on its arguments.

Theorem 4.3. We have
∂S∗

∂qiB
= pBi,

∂S∗

∂tB
= −HB,

∂S∗

∂qiA
= −pAi,

∂S∗

∂tA
= HA,

where

pBi(qA, tA, qB, tB) :=
∂L

∂vi
(qB, q̇

∗
qA,tA,qB ,tB

(tB), tB),

pAi(qA, tA, qB, tB) :=
∂L

∂vi
(qA, q̇

∗
qA,tA,qB ,tB

(tA), tA),

HB(qA, tA, qB, tB) =
d∑
i=1

pBi(qA, tA, qB, tB)q̇∗i(tB)− L(qB, q̇
∗(tB), tB),

HA(qA, tA, qB, tB) =
d∑
i=1

pAi(qA, tA, qB, tB)q̇∗i(tA)− L(qA, q̇
∗(tA), tA).

One can also compactly write

dS∗ = −
d∑
i=1

pAidq
i
A +HAdtA +

d∑
i=1

pBidq
i
B −HBdtB.

Example 4.4. Let us check the above formulae in the case of Ex-
ample 4.2. We explicitly have

∂S∗

∂qB
= m

qB − qA
tB − tA

= mq̇∗qA,tA,qB ,tB(tB)

and
∂S∗

∂tB
= −1

2
m

(
qB − qA
tB − tA

)2

= −1

2
mq̇∗qA,tA,qB ,tB(tB)2.

Proof of Theorem 4.3. We begin with the derivatives with re-
spect to qB. Let δqB be a vector in Rd. We have

lim
ε→0

S∗(qA, tA, qB + εδqB, tB)− S∗(qA, tA, qB, tB)

ε
=

d∑
i=1

∂S∗

∂qiB
δqiB.

Write q∗ε := q∗qA,tA,qB+εδqB ,tB
and q∗ := q∗ε |ε=0. We have

q∗ε = q∗ + εδq +O(ε2)
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for a uniquely defined path δq : [tA, tB]→ Rd. Thus,

lim
ε→0

S[q∗ε ]− S[q∗]

ε
=
δS

δq
[q∗, δq],

which implies
d∑
i=1

∂S∗

∂qiB
δqiB =

δS

δq
[q∗, δq].

Now observe that, since q∗ε is an extremal path, we have

δS

δq
[q∗, δq] =

=
d∑
i=1

(
∂L

∂vi
(qB, q̇

∗(tB), tB)δqi(tB)− ∂L

∂vi
(qA, q̇

∗(tA), tA)δqi(tA)

)
.

(4.1)

Since q∗ε (tA) = qA, we get δq(tA) = 0. From q∗ε (tB) = qB + εδqB, we
conclude δq(tB) = δqB. Thus,

δS

δq
[q∗, δq] = =

d∑
i=1

∂L

∂vi
(qB, q̇

∗(tB), tB)δqiB,

which proves the first equation.
We now come to the second equation, the derivative with respect

to tB. For δtB ∈ R, we have

lim
ε→0

S∗(qA, tA, qB, tB + εδtB)− S∗(qA, tA, qB, tB)

ε
=
∂S∗

∂tB
δtB.

Write q∗ε := q∗qA,tA,qB ,tB+εδtB
and q∗ := q∗ε |ε=0. Notice that q∗ε is defined

on the interval [tA, tB + εδtB]. Assume εδtB ≥ 0 and denote by q̃∗ε the
restriction of q∗ε to [tA, tB]. We then have

S[q∗ε ] = S[q̃∗ε ] +

∫ tB+εδtB

tB

L(q∗ε (t), q̇
∗
ε (t), t) dt.

Notice that we have

q̃∗ε = q∗ + εδq +O(ε2)

for a uniquely defined path δq : [tA, tB]→ Rd. Thus,1

lim
ε→0

S[q∗ε ]− S[q∗]

ε
=
δS

δq
[q∗, δq] + L(q∗ε (tB), q̇∗ε (tB), tB)δtB,

1The limit is for ε→ 0+ if δtB ≥ 0 and for ε→ 0− otherwise.
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which implies

∂S∗

∂tB
δtB =

δS

δq
[q∗, δq] + L(q∗ε (tB), q̇∗ε (tB), tB)δtB.

We use again (4.1). Notice that q̃∗ε (tA) = q∗ε (tA) = qA implies δq(tA) =
0. On the other hand,

qB = q∗ε (tB + εδtB) = q∗ε (tB) + εq̇∗ε (tB)δtB +O(ε2)

= q∗(tB) + ε(δq(tB) + q̇∗ε (tB)δtB) +O(ε2)

= qB + ε(δq(tB) + q̇∗ε (tB)δtB) +O(ε2),

so δq(tB) = −q̇∗ε (tB)δtB. We conclude that

δS

δq
[q∗, δq] = −

d∑
i=1

∂L

∂vi
(qB, q̇

∗(tB), tB)(q̇∗ε )
i(tB)δtB,

which proves the second equation.
The third and the fourth equations are proved along the same lines.

�

Now assume that L is hyperregular and denote by H its Legendre
transform. We then have

HB(qA, tA, qB, tB) = H(qB, pB(qA, tA, qB, tB), tB).

The first two equations in Theorem 4.3 then imply

∂S∗

∂tB
+H

(
qB,

∂S∗

∂qB
, tB

)
= 0;

i.e., S∗ as a function of the end variables (qB, tB) satisfies the Hamilton–
Jacobi equation.

4.3. Solving the Cauchy problem for the Hamilton–Jacobi
equation

The Cauchy problem for the Hamilton–Jacobi equation is the sys-
tem

∂S

∂t
+H

(
q,
∂S

∂q
, t

)
= 0,

S(q, t0) = σ(q),

where σ is a given function on U . For simplicity, and actually without
loss of generality, we assume that H is time independent and take
t0 = 0.
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We want to show that we can solve the Cauchy problem for the
Hamilton–Jacobi equation by integrating the Hamilton equations. First
define

L :=

{
(q, p) ∈ U × Rd : pi =

∂σ

∂qi
(q) ∀i

}
and Lt := φt(L), where φt is the flow of the Hamiltonian vector field
of H.

Notice that L is defined as the graph of a map. This will be the
case also for Lτ for τ small. Let t1 be the largest number such that
Lτ is a graph for all τ ∈ (0, t1). Then for each q ∈ U and for each
τ ∈ (0, t1) there is a unique p(q, τ) such that (q, p(q, τ)) ∈ Lτ . We then
have a unique orbit (q∗, p∗) on the interval [0, τ ] such that q∗(τ) = q
and p∗(τ) = p(q, τ): namely, (q∗, p∗)(t) = φt(φ

−1
τ (q, p(q, τ))).

Equivalently, (q∗, p∗) is the unique orbit with q∗(τ) = q and p∗i (0) =
∂σ
∂qi

(q∗(0)) ∀i.2 These orbits are called characteristics of the system.

Let φ : U × (0, t1) → U be the map that assigns q∗(0) to a pair
(q, τ). Notice that limτ→0 φ(q, τ) = q ∀q ∈ U , so we can extend φ to
U × [0, t1) Then we have the

Theorem 4.5. If H is the Legendre transform of the Lagrangian
L, then the function

S(q, τ) := σ(φ(q, τ)) +

∫ τ

0

L(q∗(t), q̇∗(t)) dt

solves the Cauchy problem for τ ∈ [0, t1).

Proof. We clearly have S(q, 0) = σ(q). Then let

Schar(q, τ) :=

∫ τ

0

L(q∗(t), q̇∗(t)) dt = S∗(φ(q, τ), 0, q, τ).

By Theorem 4.3 we have

∂Schar

∂qj
(q, τ) = pj(q, τ)−

d∑
i=1

∂σ

∂qi
(φ(q, τ))

∂φi

∂qj
(q, τ),

∂Schar

∂τ
(q, τ) = −H(q, p(q, τ))−

d∑
i=1

∂σ

∂qi
(φ(q, τ))

∂φi

∂τ
(q, τ).

2In practice, one solves the backward Cauchy problem with final conditions
q∗(τ) = q and p∗(τ) = p for some p and then uses the conditions p∗i (0) =
∂σ
∂qi (q∗(0)) ∀i to determine p as a function of q and τ .
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Hence

∂S

∂qj
(q, τ) = pj(q, τ),

∂S

∂τ
(q, τ) = −H(q, p(q, τ)),

so S solves the Hamilton–Jacobi equation. �

For a general Hamiltonian H, we have the

Theorem 4.6. The function

S(q, τ) := σ(φ(q, τ)) +

∫ τ

0

(
d∑
i=1

p∗i (t)q̇
∗i(t)−H(q∗(t), p∗(t))

)
dt

solves the Cauchy problem for τ ∈ [0, t1).

Notice, by the way, that for H the Legendre transform of L one has∫ τ

0

(
d∑
i=1

p∗i (t)q̇
∗i(t)−H(q∗(t), p∗(t))

)
dt =

∫ τ

0

L(q∗(t), q̇∗(t)) dt.

Proof. We clearly have S(q, 0) = σ(q). Then recall that the
Hamilton equations for H are also the EL equations for the the La-
grangian function

L̃(q, p, vq, vp, t) :=
d∑
i=1

piv
i
q −H(q, p, t)

defined on (U × Rd) × R2d × I. Denote by S̃ the action functional

corresponding to L̃ and observe that

SHam(q, τ) :=

∫ τ

0

(
d∑
i=1

p∗i (t)q̇
∗i(t)−H(q∗(t), p∗(t))

)
dt = S̃[(q∗, p∗)].

We now want to compute derivatives of SHam with respect to its
arguments. We essentially proceed as in the proof of Theorem 4.3. The
first remark is that, for any solution (Q,P ) of the Hamilton equations
on an interval [0, τ ], we have

δS̃[(Q,P ), (δQ, δP )] := lim
ε→0

S̃[(Q+ εδQ, P + εδP )]− S̃[(Q,P )]

ε

=
d∑
i=1

(
Pi(τ)δQi(τ)− Pi(0)δQi(0)

)
.
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In particular, for the characteristic (q∗, p∗) we have

δS̃[(q∗, p∗), (δQ, δP )] =
d∑
i=1

pi(q, τ)δQi(τ)−
d∑
i=1

∂σ

∂qi
(φ(q, τ))δQi(0),

where again we have written p∗(τ) = p(q, τ).
Now consider the characteristic (q∗ε , p

∗
ε) corresponding to (q+εδq, τ).

We write q∗ε = q∗ + εδq∗ +O(ε2) and p∗ε = p∗ + εδp∗ +O(ε2). Since

q + εδq = q∗ε (τ) = q + εδq∗(τ) +O(ε2),

we get δq∗(τ) = δq. Since

φ(q + εδq, τ) = q∗ε (0) = φ(q, τ) + εδq∗(0) +O(ε2),

we get δq∗i(0) =
∑d

j=1
∂φi

∂qj
(q, τ)δqj. Hence

δS̃[(q∗, p∗), (δq∗, δp∗)] =
d∑
i=1

pi(q, τ)δqi −
d∑

i,j=1

∂σ

∂qi
(φ(q, τ))

∂φi

∂qj
(q, τ)δqj.

Since

lim
ε→0

SHam(q + εδq, τ)− SHam(q, τ)

ε
=

d∑
j=1

∂SHam

∂qj
(q, τ)δqj,

we finally get

∂SHam

∂qj
(q, τ) = pj(q, τ)−

d∑
i=1

∂σ

∂qi
(φ(q, τ))

∂φi

∂qj
(q, τ)

and so
∂S

∂qj
(q, τ) = pj(q, τ).

Similarly, we now denote by (q∗ε , p
∗
ε) the characteristic corresponding

to (q, τ+εδτ). We assume εδτ ≥ 0 and denote by (q̃∗ε , p̃
∗
ε) the restriction

of (q∗ε , p
∗
ε) to [0, τ ]. We then have

SHam(q, τ + εδτ) =

= S̃[(q̃∗ε , p̃
∗
ε)] +

(
d∑
i=1

pi(q, τ)q̇∗i(τ)−H(q, p(q, τ))

)
εδτ +O(ε2).

We write q̃∗ε = q∗+εδq∗+O(ε2) and p̃∗ε = p∗+εδp∗+O(ε2). Reasoning as

above we get δq∗(τ) = −q̇∗(τ)δτ and δq∗i(0) = ∂φi

∂τ
(q, τ)δτ . Therefore,

putting everything together, we get

∂SHam

∂τ
(q, τ) = −H(q, p(q, τ))−

d∑
i=1

∂σ

∂qi
(φ(q, τ))

∂φi

∂τ
(q, τ)
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and so
∂S

∂τ
(q, τ) = −H(q, p(q, τ)).

Hence S solves the Hamilton–Jacobi equation. �

Remark 4.7. In Remark 4.1 we have seen that the Hamilton–
Jacobi equation is related to the asymptotics of the Schrödinger equa-
tion. With the results of this section, we now also see that ψ(q, t) :=

e
i
~S(q,t) solves the Schrödinger equation up to O(~). This shows the role

of the exponential of the action functional in quantum mechanics (its
full-fledged role appears in Feynman’s path integral).

4.4. Generating functions

Let ω =
∑d

i=1 dpidq
i by the symplectic form on W ⊆ R2d with

coordinates (q, p) and Ω =
∑d

i=1 dPidQ
i be the symplectic form on

Z ⊆ R2d with coordinates (Q,P ). Recall that a symplectomorphism
(in this context a.k.a. canonical transformation) is a diffeomorphism
φ : W → Z such that φ∗Ω = ω. Also recall that the orbits of the
Hamiltonian system with Hamiltonian function H on W are bijectively
mapped by the symplectomorphsm φ to the orbits of the Hamiltonian

system with Hamiltonian function H̃ := H ◦ φ−1 on Z. The idea is to

look for a symplectomorphism that makes H̃ very simple, so that its
Hamilton equations can be solved explixitly.

We actually look for a symplectomorphism that makes H̃ depend

only on the P variables: H̃(Q,P ) = K(P ) for some function K. In
this case, the Hamilton equations are just Ṗ = 0 and Q̇i = ∂K

∂Pi
(P ), ∀i.

The solution of the Cauchy problem with initial condition, say at time
t = 0, given by (Q0, P0) is then P (t) = P0 and Qi(t) = Qi

0 + ∂K
∂Pi

(P0)t,
∀i.

Notice that ω = dα with α =
∑d

i=1 pidq
i and that Ω = dβ with

β =
∑d

i=1 PidQ
i. Notice that a diffeomorphism φ : W → Z such that

α − φ∗β is the differential of a function F is in particular a symplec-
tomorphism. We will only consider symplectomorphisms of this form.3

More explicitly, we denote by Qi(q, p) and Pi(q, p) the components of
φ. So we have

d∑
i=1

pidq
i −

d∑
i=1

Pi(q, p)dQ
i(q, p) = dF (q, p). (4.2)

3In general, φ is a symplectomorphism if and only if α − φ∗β is closed. If
W and Z are contractible, in particular star shaped, then every closed 1-form is
automatically exact.
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Now we assume that the graph of φ in Z×W may be parametrized by
the (q, P ) variables (instead of the (q, p) variables). Namely, we want
to solve the equations Pi = Pi(q, p) with respect to the p variables
getting them as smooth functions of the P s and the qs. By the implicit
function theorem, this is possible if the following condition is satisfied:

Assumption 4.8. We assume that the matrix
(
∂Pi

∂pj

)
i,j=1,...,d

is non-

degenerate for all (q, p) ∈ W .

Under this assumption, we then get functions p̃(q, P ) and define

Q̃(q, P ) := Q(q, p̃(q, P )). Equation (4.2) now becomes

d∑
i=1

p̃i(q, P )dqi −
d∑
i=1

PidQ̃
i(q, P ) = dF̃ (q, P )

with F̃ (q, P ) = F (q, p̃(q, P )). Setting

S(q, P ) := F̃ (q, P ) +
d∑
i=1

PiQ̃
i(q, P ),

we finally get

d∑
i=1

pi(q, P )dqi +
d∑
i=1

Qi(q, P )dPi = dS(q, P ),

where we have removed the tildes for simplicity of notation. Notice
that this equation is equivalent to the system

pi =
∂S

∂qi
, (4.3)

Qi =
∂S

∂Pi
, (4.4)

for i = 1, . . . , d. Notice that Assumption 4.8 is satisfied if the following
holds:

Assumption 4.9. The matrix
(

∂2S
∂qj∂Pi

)
i,j=1,...,d

is nondegenerate for

all (q, P ).

As the map φ can then be reconstructed by these equations, an S
satisfying this condition is called a generating function for φ. Next we

want H̃(Q,P ) = K(P ). Since H̃(Q(q, P ), P ) = H(q, p(q, P )), we get
by (4.3) that

H

(
q,
∂S

∂q

)
= K(P ).
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Hence S, as a function of q parametrized by P , solves the reduced
Hamilton–Jacobi equation at energy K(P ). A solution satisfying As-
sumption 4.9 is called a complete integral.

What we have shown is Jacobi’s theorem that a complete integral
for the Hamilton–Jacobi equation forH allows one to solve its Hamilton
equations.

Notice that the P variables are contants of motions for the H̃ sys-
tem. Also notice that their differentials are clearly linear independent
and that their pairwise Poisson brackets vanish. Regarded as functions
of the (q, p) variables, they are then independent constants of motions
for the H system in involution. A d-dimensional Hamiltonian system
with d independent constants of motions in involution is called inte-
grable. We then see that the above method can only work for integrable
systems.





APPENDIX A

Differential Forms

A.1. Notations

In these notes U will denote an open subset of Rn, α a k-form, β
an l-form, f a function and X a vector field on U . We will denote by
(x1, . . . , xn) the coordinates on U and accordingly write

α(x) =
n∑

i1,...,ik=1

αi1,...,ik(x) dxi1 ∧ · · · ∧ dxik ,

β(x) =
n∑

j1,...,jl=1

βj1,...,jl(x) dxj1 ∧ · · · ∧ dxjl ,

X(x) =
n∑
i=1

X i(x)
∂

∂xi
.

For simplicity we will assume throughout that α, β, f and X are
smooth, i.e., that all components αi1,...,ik , all components βj1,...,jl , all
components X i and f are arbitrarily often continuously differentiable.
Recall that functions and zero-forms are one and the same thing.

Remark A.1. The symbols ∂
∂x1
, . . . , ∂

∂xn
denote the basis of Rn

corresponding to our choice of coordinates. The symbols dx1, . . . , dxn

denote the dual basis of (Rn)∗; i.e., the canonical pairing of dxi with
∂
∂xj

is 1 if i = j and 0 otherwise. The induced basis of ∧k(Rn)∗ is given
by the symbols (dxi1 ∧ · · · ∧ dxik)1≤i1<···<ik≤n. The wedge product of
the symbols dxi is defined by the identity

dxi ∧ dxj = −dxj ∧ dxi.

Using this identity one can rewrite all the terms in the above expan-
sion of α into a linear combination of the basis elements (dxi1 ∧ · · · ∧
dxik)1≤i1<···<ik≤n of ∧k(Rn)∗. Notice that the coefficients of each basis
element is given by the complete antisymmetrization of the components
with respect to their indices. This means that it is enough to consider
completely antisymmetric components, but it is quite convenient (see,
e.g., the formulae for the wedge product and for the exterior derivative
below) to allow for more general (though redundant) components.

37
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Remark A.2. If k = 0, then α is a function; if k > n or k < 0,
then α is 0.

Remark A.3. The attentive reader might have noticed that we
consistently use upper and lower indices (to denote components of vec-
tors and forms, respectively). This helps in bookkeeping but is not
essential. It also allows using Einstein’s convention on repeated indices
that a sum over an index is understood when the index is repeated,
once as an upper index and once as a lower index. With this conven-
tion, which we will not use in this note, the last formula would, e.g.,
read X(x) = X i(x) ∂

∂xi
.

A.2. Definitions

The wedge product of α and β is the (k + l)-form

α∧β(x) =
n∑

i1,...,ik,j1,...,jl=1

αi1,...,ik(x)βj1,...,jl(x) dxi1∧· · ·∧dxik∧dxj1∧· · ·∧dxjl .

Notice that if k + l > n, then α ∧ β is automatically zero.
The differential or exterior derivative of α is the (k + 1)-form

dα(x) =
n∑
j=1

n∑
i1,...,ik=1

∂

∂xj
αi1,...,ik(x) dxj ∧ dxi1 ∧ · · · ∧ dxik .

Notice that dxi denotes at the same time the i-th basis vector of (Rn)∗

and the differential of the coordinate function xi. Also notice that if α
is a top form, i.e., k = n, then automatically dα = 0.

If V is an open subset of Rm and φ a smooth map V → U , the
pullback of α is the k-form on V defined by

φ∗α(y) := ∧kdφ(y)∗α(φ(y)), y ∈ V,
where dφ(y) : Rm → Rn denotes the differential of φ at y, dφ(y)∗

its transpose and ∧kdφ(y)∗ the k-th exterior power of the latter. If
(y1, . . . , ym) are coordinates on V , we have

φ∗α(y) =
m∑

j1,...,jk=1

n∑
i1,...,ik=1

αi1,...,ik(φ(y))
∂φi1

∂yj1
(y) · · · ∂φ

ik

∂yjk
(y) dyj1∧· · ·∧dyjk .

Observe that, if W is an open subset of Rs and ψ a smooth map
W → V , we have

(φ ◦ ψ)∗ = ψ∗φ∗.

The Lie derivative with respect to X of α is the k-form

LXα = lim
t→0

φ∗X,tα− α
t

,
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where φX,t is the flow of X at time t. Explicitly we have

LXα(x) =
n∑

i1,...,ik=1

X(αi1,...,ik)(x) dxi1 ∧ · · · ∧ dxik+

+
n∑

i1,...,ik=1

n∑
r,s=1

(−1)r−1αi1,...,ik(x)
∂X ir

∂xs
(x) dxs∧dxi1∧· · ·∧d̂xir∧· · ·∧dxik ,

where X(αi1,...,ik) =
∑n

j=1X
j ∂
∂xj
αi1,...,ik denotes the directional deriva-

tive of the function αi1,...,ik in the direction of X and the caret̂denotes
that the factor dxir is omitted.

The contraction of X with α is the (k − 1)-form

ιXα(x) =
n∑

i1,...,ik=1

n∑
r=1

(−1)r−1αi1,...,ik(x)X ir(x) dxi1∧· · ·∧d̂xir∧· · ·∧dxik .

If α is a function, i.e., k = 0, then automatically ιXα = 0.

A.3. Properties

The wedge product is bilinear over Rn, whereas the differential, the
pullback, the Lie derivative and the contraction are linear over Rn.
Moreover, we have the following properties:

α ∧ β = (−1)k+lβ ∧ α, (A.1)

d2α = 0, (A.2)

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ, (A.3)

φ∗f = f ◦ φ, (A.4)

φ∗(α ∧ β) = φ∗α ∧ φ∗β, (A.5)

dφ∗α = φ∗dα, (A.6)

LXf = X(f), (A.7)

LX(α ∧ β) = LXα ∧ β + α ∧ LXβ, (A.8)

LXdα = dLXα, (A.9)

ιX(α ∧ β) = ιXα ∧ β + (−1)kα ∧ ιXβ, (A.10)

LXα = ιXdα + dιXα (Cartan’s formula). (A.11)
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Observe that the above properties characterize d, φ∗, LX and ιX com-
pletely. If Y is a second vector field, we also have

ιXιY α = −ιY ιXα, (A.12)

LXLY α− LY LXα = L[X,Y ]α, (A.13)

ιXLY α− LY ιXα = ι[X,Y ]α, (A.14)

where [X, Y ] is the Lie bracket of X and Y defined by

[X, Y ](f) = X(Y (f))− Y (X(f)).
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