Counting the number of parasite eggs in faecal samples is a widely used diagnostic method to evaluate parasite burden. Typically a sub-sample of the diluted faeces is examined for eggs. The resulting egg counts are multiplied by a specific correction factor to estimate the mean parasite burden. To detect anthelmintic resistance, the mean parasite burden from treated and untreated animals are compared. However, this standard method has some limitations. In particular, the analysis of repeated samples may produce quite variable results as the sampling variability due to the counting technique is ignored. We propose a hierarchical model that takes this sampling variability as well as between-animal variation into account. Bayesian inference is done via Markov chain Monte Carlo sampling.

For intermediate and advanced use, we recommend to use the R environment to have access to the full functionality of the package **eggCounts**.

If you have suggestions, please send them to Reinhard Furrer.