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Abstract—The paper studies the problem of securely storing
biometric passwords, such as fingerprints and irises. With the
help of coding theory Juels and Wattenberg derived in 1999 a
scheme where similar input strings will be accepted as the same
biometric. In the same time nothing could be learned from the
stored data. They called their scheme a fuzzy commitment scheme.

In this paper we will revisit the solution of Juels and Watten-
berg and we will provide answers to two important questions:
what type of error-correcting codes should be used and what
happens if biometric templates are not uniformly distributed, i.e.
the biometric data come with redundancy.

Answering the first question will lead us to the search for low-
rate large-minimum distance error-correcting codes which come
with efficient decoding algorithms up to the designed distance.

In order to answer the second question we relate the rate
required with a quantity connected to the “entropy” of the string,
trying to estimate a sort of “capacity”, if we want to see a flavor
of the converse of Shannon’s noisy coding theorem.

Finally we deal with side-problems arising in a practical
implementation and we propose a possible solution to the main
one that seems to have so far prevented in many situations real
life applications of the fuzzy scheme.

I. INTRODUCTION

Traditionally passwords for access to a computer are not

stored in plain-text but rather as images under a hash function.

Hash functions have the property that they can easily be

computed for any input string but it is computationally not

feasible to compute any pre-image of a given image point.

Usually it is also desirable that hash functions are ‘collision

resistant’, this means it is computationally not feasible to come

up with two different input strings which are mapped to the

same hash values. Because of the last property standard hash

functions such as SHA-1 are not suitable to store biometric

data. What we would need is a hash function having the

property that similar input strings will result in the same

hash values. Until recently no good scheme has been known

and many practical systems store biometric data such as

fingerprints to access a personal computer in plain-text.
Martinian, Yekhanin and Yedidia [1] call the problem at

hand the secure biometric storage problem. The problem arises

when biometrics such as fingerprints and irises are used instead

of passwords. It is desirable for security reasons that the

biometric data is not stored in plain-text on a storage device

but rather in encrypted form. When a user wants to access the

system the access device should grant access as long as two

biometrics do not differ by more than a certain amount of bits.

In the literature there are several schemes which use ideas

from coding theory to tackle the secure biometric storage

problem. According to the authors of [1] the first solution was

proposed by Davida, Frankel and Matt in [2]. In their own

paper [1] Martinian et. al. propose an information theoretic

solution based on the Slepian-Wolf theorem. This system

has the property that the biometric is securely stored, it has

however the disadvantage that a person who has access to the

stored data and the implemented algorithm can compute a bit

string which will provide access to the system even though

the bit string is not close to any biometric data.

In this paper we will be concerned with an algorithm first

proposed by Juels and Wattenberg [3]. Also this system makes

heavily use of coding theory.

The paper is structured as follows: In the next section we

revisit the algorithm of Juels and Wattenberg. The original

paper [3] leaves two important questions open. First what are

good practical codes to be used having very large block length

and which provide the robustness and security level required

for the secure biometric storage problem. We provide answers

to this problem in Section III. The second question arises when

the possible biometric bit-strings are not uniformly distributed.

Of course this is an important issue as all practical systems

are suffering this problem. We will address this problem in

Section IV. Section V and Section VI are finally devoted to

some practical implementation issues.

II. THE FUZZY COMMITMENT SCHEME OF JUELS AND

WATTENBERG

Juels and Wattenberg [3] proposed a ‘fuzzy commitment

scheme’ capable of storing biometric data in binary form. In

this section we describe the scheme for data over a general

alphabet and we derive a strengthened theorem.

Let F = Fq be a finite field. We assume that the biometric

data is given in form of a vector b ∈ F
n. Assume C ⊂ F

n is

an [n, k, d] linear code and distance d is given by

d = 2t + 1.

We also assume that there is an efficient decoding algorithm

capable of decoding up to t errors.

Let h : F
n −→ F

l be a hash function. In particular h

should be collision resistant and it should be computationally

not feasible to compute an x ∈ h−1(y) for any y ∈ F
l.
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Let b ∈ F
n be the biometric one wants to store on the

computer. The algorithm requires to select a random code word

rb ∈ C. The system then computes the vector

l := b − rb

and stores on the system:

(h(rb), l).

The following is a strengthening of the main theorem in [3].

Theorem 1: If the possible biometrics b ∈ F
n are uniformly

distributed then computing the biometric b ∈ F
n from the

stored data (h(rb), l) is computationally equivalent to invert

the ‘restricted’ hash function

h |C : C −→ F
l.

Proof: Since b and rb were selected independently and

uniformly at random the vector l := b − rb reveals no

information about the random choice of rb ∈ C. An attacker

is left with the task to compute rb from h(rb).
The theorem provides the means to come up with a practical

secure storage system once we can assume that the biometrics

are uniformly distributed over the ambient space F
n. If this is

the case and if h is a hash function which is practically secure

then we only have to require that the size of the code |C| ≥
280. This is due to the fact that it is generally accepted that a

total search space of 280 is beyond the capabilities of modern

computers. As a result it is desirable that codes constructed

over the binary field have dimension k = dim C ≥ 80.

The following lemma shows that the system allows to accept

an authorized user as soon as this user provides a biometric

vector which comes close enough to the originally supplied

vector b ∈ F
n.

Lemma 2: Let b̃ ∈ F
n be a vector whose Hamming distance

satisfies:

dH(b, b̃) ≤ t.

Then it is possible to efficiently compute b from the stored data

(h(rb), l). (In fact authorization is granted by comparing the

hash stored with the hash of the decoded codeword, without

any need to compute b.)

Proof:

dH(rb, b̃ − l) = dH(b − l, b̃ − l) = dH(b, b̃) ≤ t.

The vector b̃− l decodes by assumption uniquely to the code

vector rb. Knowing rb and l is equivalent to knowing b.

Several considerations are due at this moment, starting with

the choice of the code to use.

In [3] it is proposed that Reed-Solomon and BCH codes

might provide useful results (see also [4]). We believe these

are not necessarily good options for two reasons. First practical

biometric systems have often to deal with large amount of bits;

we can consider 100′000 bits as a crude estimate just as an

example, although this may vary a lot in dependance of the

biometric used. Moreover we can say an error tolerance of

10% of errors is a reasonable requirement, although here too

it can be much more or sometimes less. BCH codes of block

length 105 and distance 20′000 are necessarily of very low

rate and it is practically not feasible to run e.g. a Berlekamp-

Massey algorithm once so many syndromes are involved.

The next section addresses the choice of the code.

III. CHOICE OF THE CODE

Based on the comments in the last section we require an

[n, k, d] linear code whose dimension is k ≥ 80 over the binary

field, possibly smaller if one works over larger alphabets. In

addition one wants to have a large relative minimum distance

that only low rate codes can afford. Indeed because e.g. of

the asymptotic Elias upper bound (see e.g. [5]) only very low

rate binary codes can have relative distance larger than e.g.

0.4. Of course the code should come with efficient decoding

algorithms even when the block length is about n = 105.

We think of two types of codes as possible candidates for

this application, namely 1) Product codes, and 2) LDPC codes.

Both these codes can be decoded with linear or close to linear

complexity in the block length.

Let us consider the first option: product of classical codes.

We can define them using the generator matrices (see e.g. [6]):

If A and B are the generator matrices of two codes, C1 and

C2, with parameters (n1, k1, d1) and (n2, k2, d2), then the

Kronecker product of matrices

A ⊗ B = (aijB)

obtained by replacing every entry aij of A by aijB is the

generator matrix of the product code.

The new code has parameters (n1n2, k1k2, d1d2) and can be

viewed as the set of all codewords consisting of n1×n2 arrays

constructed in such a way that every column is a codeword of

the first code and every row is a codeword of the second one.

Clearly, given the definition of the product of two codes,

the product of more than two codes can be defined as well.

We give here some examples of product of two codes with

parameters getting close to (100000, 100, 20000):

• (512, 98, 93), a classical Goppa code and (200, 1, 200), a

repetition code.

• (121, 49, 37), an extended Goppa code [7] and

(825, 2, 550), where codewords are the all-zero

codeword, two codewords with respectively the first and

the last 275 bits equal to ones and the other zeroes, and

the sum of these two;

• (144, 50, 48), an extended Goppa code and (693, 2, 462),
where codewords are the all-zero codeword, two code-

words with respectively the first and the last 231 bits

equal to ones and the other zeroes, and the sum of these

two;

• (256, 26, 116), an extended Goppa code and

(400, 4, 200), an (8,4,4) extended Hamming code

with each symbol repeated 50 times.

The decoding procedure of such product codes is based

on iterative algorithms, where one decodes alternatively by

columns and by rows (see also [8]–[10]). Thanks to this kind

of splitting in the decoding, we can afford to use classical



codes such as Goppa codes, while maintaining a reasonable

computational complexity.
Since the first version of our paper was made available at

the arXiv a similar choice of coding scheme was proposed

in [11].
As for LDPC codes, the difficulty seems mainly that of

finding the parameters we need. Codes studied in the literature

often aim at rates of 1/2 or higher. Such codes necessarily have

a relatively poor relative minimum distance
Among the many constructions in the literature, we believe

that RA, IRA and eIRA codes (see for example [13], [14])

should be good candidates with this respect. We have also

taken into consideration the use of algebraic constructions of

LDPC codes, such as the Margulis-Ramanujan type [15]: in

this case we should modify the construction to lower the rate,

for example by taking m + 1 copies of the graph on the left

and m on the right for a suitable m, but we face the difficulty

of finding a good minimum distance [16].
Actually turbo codes could be a better option for a low

rate; though in more pratical scenarios, as we will see in next

section, such low rates are not convenient anymore for security

reasons and more standard parameters suit better.

IV. DISTRIBUTION OF BIOMETRIC TEMPLATES

Theorem 1 works under the strong assumption that the

biometric data is uniformly and randomly distributed over

the ambient space F
n. In practical applications this is a very

unlikely scenario. In this section we estimate a threshold for

the dimension k of the code, above which the commitment

scheme of Juels and Wattenberg is most probably secure.
First note that if one has some information about the bio-

metric b it will be possible to recover from l some information

about rb. Dependent on the size of C it might be possible to

do a search among all codewords with a particular pattern and

consequently break the system. To possibly defend the system

from this attack, one could essentially take a higher rate code

(but at the expense of lowering the minimum distance). So our

next step is to relate the uncertainty or randomness connected

to the string with the dimension required for the code.
Following [17], we can speak of the entropy of a binary

string as the log in base 2 of the number of possible strings:

so, for example, for a binary string of length n, where each

bit is chosen independently and randomly between 0 and 1,

the entropy is defined to be n and it is measured in units of

information or Shannon bits (see e.g. [18]). If the string is

not random, the entropy is the log of the number of the so

called typical sequences; if, for example, each bit is chosen

independently to be 1 with probability p and 0 with probability

1 − p, then the entropy of the string is nh(p), where h(p) =
−[p log p + q log q] is the Shannon function.

Now, let H(b) be the entropy of the biometric. If that is n,

that means that biometrics are randomly distributed, then we

can afford a code with dimension k = k0 (k0 = 100, say).

When the distribution is not really random, then the “number

of possible strings” is reduced from 2n to 2H(b).
So, roughly speaking, it is like the eavesdropper Eve knows

the correct bit at n − H(b) positions, so that if we want her

to search nevertheless among 2k0 codewords, then, counting

in the worst case over all possible strings for those positions,

we should need 2k0 · 2(n−H(b)) codewords, i.e. the dimension

should be

k ≥ k0 + (n − H(b)).

Clearly, as said, we are considering a worst case scenario,

so that this requirement makes sense for, let’s say, reasonable

values of the parameters, that is for example k0 << H(b);
otherwise k could be asked to be even larger than n. Essen-

tially our requirement is purposely asking a bit too much than

the strict minimum, which though doesn’t waste at all in a

security concern.

To see the issue from another view point, we can think of

a channel, where at one side we have the message rb and at

the other end Eve tries to decode and get rb from the pair

H(rb), l. The converse of Shannon’s noisy coding theorem

says that the probability of correct decoding can be bounded

as 2−nG(R) where G(R) is a positive function of the rate R

for R > C. So in some sense we have estimated the capacity

of this channel as k0

n
+ 1 − H(b)

n
.

(For references on information theory, Shannon’s noisy

coding theorem and its converse [19]–[23].)

V. PRACTICAL IMPLEMENTATION ISSUES

The fact that the fuzzy scheme, in its original form as

described above, has not found yet, as far as we know, so

many real applications in biometric storage, depends not only

in the way of implementing it as we have discussed it so far,

but also in further practical difficulties that make the problem

more complicated than how we stated it.

The main problem to overcome is the fact that the scheme

requires that the two passwords to be compared are prealigned;

and the difficulty consists in aligning with a password that is

not in the clear. There are also some other aspects one has to

improve or fix; for example one has to take into account the

possibility of erasures and unordered collection of biometric

features. The error distribution is also far from uniform in

practical schemes.

In the literature [24]–[32] we can find a deeper discussion

of all these side problems together with proposals to attack

some of them, each of them with its pros and cons. In the

following section we propose another way of dealing with it,

i.e. we propose to use, instead of biometrics, some particular

histograms derived from them that can capture important

features of the images. As a side effect, since these histograms

are also a means of compression, we would obtain smaller

lengths for the passwords to be hashed and also we wouldn’t

need to require such a high minimum distance. So looking

for different and more convenient code parameters could be a

relevant consequence.

VI. HISTOGRAMS AND ALIGNMENT

What we essentially want to do to solve the pre-alignment

problem is to somehow transform the biometric passwords and

store the output of the transformation. What we first require



from this “function” is to be resistant to noise, changes in illu-

mination and transformations such as translation and rotation.

The literature [33]–[35] indicates that the so called “multires-

olution histograms”, that are sets of intensity histograms of an

image at multiple image resolution, satisfy these prerequisites.

So they could possibly solve our problem, but we require

another important feature, i.e. we want the transformation to

be one-to-one or at least that not too many different biometrics

give the same output. Pass and Zabih [36], [37] worked in this

direction and introduced the notions of histogram refinement

and joint histograms. We believe that some transformation of

this kind that encompasses these features could be a solution

to overcome the problem of alignment. And also new issues

would consequently follow: the size of error tolerance required

(that would be much reduced) and the choice of other suitable

code parameters.
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